

Visible Wavelength Extension for Femtosecond IR OPOs

Fully-Automated Second Harmonic Generator Tunable across 495 - 775 nm

ORIATM VIS

KEY FEATURES —

- Highest power with >400 mW at the peak of the tuning range.
- Four output ports: 1) 990 1550 nm at full power, 2)
 495 775 nm, 3) 1680 4000 nm, and 4) 990 1550 nm undepleted.
- Excellent beam pointing stability with TEM, spatial quality.
- Hands-free operation with a dedicated control software.
 Control drivers available.
- Compatible with most commercial femtosecond sources tunable across 990 - 1550 nm.

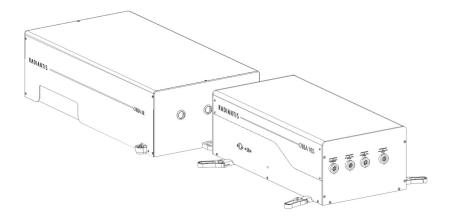
APPLICATIONS -

- Time-Resolved Spectroscopy.
- Single-Molecule Spectroscopy.
- Pump-Probe Experiments.
- CARS and Raman Microscopy.
- Nanophotonics.

Description

Broad tuning in the visible spectrum is now possible with the Oria VIS, a wavelength extension unit for most commercial femtosecond IR OPOs. This sophisticated second harmonic generation (SHG) module converts the IR spectrum of a femtosecond IR OPO (990 - 1550 nm) into the visible range (495 - 775 nm) in a practical and easy-to-use architecture.

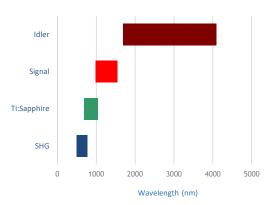
The Oria VIS features the highest efficiency in its class, providing more than 40% conversion and 400 mW at the peak of the tuning range. As a result, output powers of more than 400 mW can be archieved when pumped by 1 W femtosecond pulses in the IR. High peak-to-peak power stability and excellent beam pointing across the complete spectral range make the Oria VIS a convenient tool for a range of scientific applications, including time-resolved spectroscopy and quantum optics.

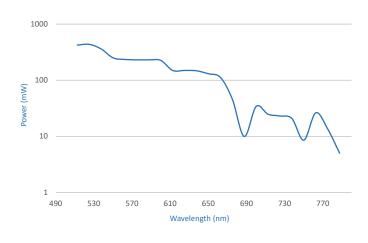

Designed for pick-and-place installation, Oria VIS ensures virtually maintenance-free operation and highest usability since it does not require manual alignment, being exclusively controlled by a PC. Control drivers are also available.

Specifications(1)

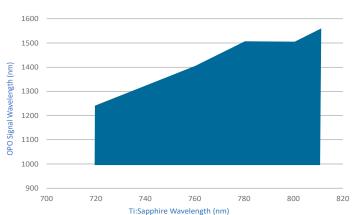
Output Characteristics	Oria VIS
Tuning range	495 - 775 nm
Output power ⁽²⁾	> 400 mW
Pulse width ⁽³⁾	< 180 fs
Beam diameter at 525 nm	2.5 mm
Beam divergence	< 1 mrad
Beam displacement with wavelength	< 2.5 μm
Spatial mode	TEM ₀₀
Polarization	Vertical
Repetition rate	80 MHz
Size (W x L x H)	568.0 x 366.5 x 189.2 mm (22.4 x 14.4 x 7.5 inch)

Notes: (1) Specifications are subject to change without notice. (2) At the peak of the tuning range, when pumped by OriaTM IR OPO. (3) When pumped with OriaTM IR OPO.

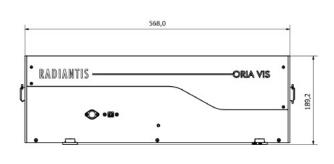

Oria IR and Oria VIS

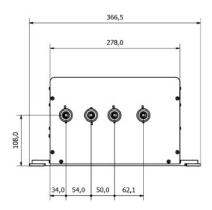

Oria Vis Wavelength Coverage

Complete Spectral Coverage of Ti:Sapphire pump, Oria IR XT, and Oria VIS



The Oria VIS includes four output ports which deliver 1) the OPO signal (990 - 1550 nm), 2) the SHG of the OPO signal (495 - 775 nm), 3) the OPO idler (1680 -4000 nm), and 4) the depleted OPO signal (990 - 1550 nm). It incorporates a pump bypass which enables the selection of 100% of the OPO signal and idler (with no SHG of the signal) or 100% of the SHG of the signal (simultaneously with the undepleted OPO signal and 100% of the idler).


Typical Oria VIS Tuning Curve



Diamond Plot

Dimensions

Notes: Dimensions in mm